
Approxima)ng Geometric
Knapsack via L-packings

Joint	work	with		
Waldo	Galvez,	Fabrizio	Grandoni,	Salvatore	Ingala,		

Sandy	Heydrich,	Andreas	Wiese.	
	
	

Arindam	Khan	
IDSIA,	Lugano,	Switzerland	

Geometric Knapsack: (2-D)

Geometric Knapsack: (2-D)
•  Input	:		
-	Rectangles	I:= {R1, R2, ,…, Rn};	Each	Ri	has	integral	width	and	height	(wi , hi) and	profit	pi .	

			-	A	Square	K × K		knapsack.	

Geometric Knapsack: (2-D)
•  Input	:		
-	Rectangles	I:= {R1, R2, ,…, Rn};	Each	Ri	has	integral	width	and	height	(wi , hi) and	profit	pi .	

			-	A	Square	K × K		knapsack.	

K=10	

100	$	 95	$	 90	$	 60	$	 5	$	
1	$	

(9,6)	 (7,6)	 (5,8)	
(4,4)	 (2,3)	

60	$	

(4,6)	

Geometric Knapsack: (2-D)
•  Input	:		
-	Rectangles	I:= {R1, R2, ,…, Rn};	Each	Ri	has	integral	width	and	height	(wi , hi) and	profit	pi .	

			-	A	Square	K × K		knapsack.	

K=10	

•  Goal	:			Find	an	axis-parallel	non-overlapping		packing	of	a	subset	of	input	rectangles	into	
				the	knapsack	that	maximizes	the	total	profit.		

100	$	 95	$	 90	$	 60	$	 5	$	
1	$	

(9,6)	 (7,6)	 (5,8)	
(4,4)	 (2,3)	

60	$	

(4,6)	

Geometric Knapsack: (2-D)
•  Input	:		
-	Rectangles	I:= {R1, R2, ,…, Rn};	Each	Ri	has	integral	width	and	height	(wi , hi) and	profit	pi .	

			-	A	Square	K × K		knapsack.	

K=10	

Variant	1:	2DK	
No	rota\ons		
are	allowed!	

	
		OPT=155	

90	$	 60	$	

5	$	

•  Goal	:			Find	an	axis-parallel	non-overlapping		packing	of	a	subset	of	input	rectangles	into	
				the	knapsack	that	maximizes	the	total	profit.		

100	$	 95	$	 90	$	 60	$	 5	$	
1	$	

(9,6)	 (7,6)	 (5,8)	
(4,4)	 (2,3)	

60	$	

(4,6)	

Geometric Knapsack: (2-D)
•  Input	:		
-	Rectangles	I:= {R1, R2, ,…, Rn};	Each	Ri	has	integral	width	and	height	(wi , hi) and	profit	pi .	

			-	A	Square	K × K		knapsack.	

K=10	

Variant	2:	(2DKR)	
90	degree	rota\ons		

are	allowed!	
	

		OPT=165	
60	$	

5	$	
100	$	

•  Goal	:			Find	an	axis-parallel	non-overlapping		packing	of	a	subset	of	input	rectangles	into	
				the	knapsack	that	maximizes	the	total	profit.		

100	$	 95	$	 90	$	 60	$	 5	$	
1	$	

(9,6)	 (7,6)	 (5,8)	
(4,4)	 (2,3)	

60	$	

(4,6)	

Applica)ons:
• Generaliza\on	of	classical	knapsack	problem.	
• Cu_ng	stock:	cloth	cu_ng,	steel/wood	cu_ng.	
•  Logis\cs	and	Scheduling:		memory	alloca\on	,	truck	loading,	robo\cs.	
• Ad-placements,	VLSI	Design.	

Related Problems

•  Independent	set	
of	rectangles:	

		Posi5ons	of	
rectangles	are	
fixed,	find	max	
profit	subset	

•  Unsplicable	flow/
Storage	alloca\on:	
Horizontal	posi5ons	
of	rectangles	are	
fixed,	find	max		
profit	subset	

•  Two	Dimensional	
Bin	Packing:	

Pack	all	items	in	min	
#	of	squares		

•  Two	Dimensional	
Strip	Packing:	

Pack	all	items	in	min	
height	fixed-width	strip	

Geometric Knapsack:

• Geometric	Knapsack	is	Strongly	NP-hard			
(even	when	all	items	are	squares	with	profit	1),	[Leung	et	al.,	JPDC	1990].	
• No	exact	algorithm	even	in	pseudo-polynomial	\me	(unless	P=NP).	
• So,	we	will	consider	Approxima\on	Algorithms.	
• An	algorithm	A	is	α-Approxima\on		
--	if	OPT(I)	≤	α	A(I)	for	all	input	instances	I.	

	

Geometric Knapsack: Prior works

• Best	known	approxima\on:	(2+ε)	[Jansen-Zhang,	SODA’04]	
		-	for	both	with	and	without	rota\ons.	
		-	even	in	the	cardinality	case	(when	all	profits	are	1).	
	
• (1+ε)-approxima\on	known	if	
		-		profit	of	an	item	is	equal	to	its	area.	[Bansal	et	al.,	ISAAC	‘09].	
		-		items	are	rela\vely	small	[Fishkin	et	al.,	MFCS	‘05].	
		-		items	are	squares	[Jansen-SolisOba,	MFCS	’07].			

Geometric Knapsack: Prior works
• Resource	augmenta\on:		
-	if	knapsack	size	is	increased	from	K	to	(1+ε)K	in	both	[Fishkin	et	al.	
MFCS	’05]		or	one	dimension	[Jansen-SolisOba,	MFCS	’07],		
-	Profit	(1-ε)OPT	can	be	obtained	in	poly\me.	
•  		Quasi	Polynomial	Time	Approxima\on	Scheme	(QPTAS):		
-	Profit	(1-ε)OPT	can	be	obtained	in	quasi-poly\me	(O(npolylog(n)),	
-	assuming	K	=	O(npolylog(n))	[Adamaszek-Wiese,	SODA	’15].		
• In	general,	(2+ε)-appx	is	s\ll	best	known	even	in	quasi-poly\me.	

Our Results:
• General	case:	
• Without	rota\ons:	(17/9+ε)<1.89-approxima\on.	
• With	rota\ons:	(1.5+ε)-approxima\on.		
• Cardinality	case:	
• Without	rota\ons:	(558/325+ε)<1.72-approxima\on.	
• With	rota\ons:	(4/3+ε)-approxima\on.		
•  In	this	talk	we	present	a	simpler	(16/9+ε)<1.78-approxima\on		
for	the	cardinality	case	without	rota\ons.		

Previous approaches: container-based packing.

Previous approaches: container-based packing.

• Container	is	an	axis-aligned	
rectangular	region	such	that		

0 K

K	

• Container	is	an	axis-aligned	
rectangular	region	such	that		
• either	it	contains	one	large	item.		

0 K0

K	

Previous approaches: container-based packing.

• Container	is	an	axis-aligned	
rectangular	region	such	that		
• either	it	contains	one	large	item.		
• or	items	are	packed	inside	the	
containers	either	as	a	horizontal	
stack	or	ver\cal	stack	

00 K

K	

Previous approaches: container-based packing.

• Container	is	an	axis-aligned	
rectangular	region	such	that		
• either	it	contains	one	large	item.		
• or	items	are	packed	inside	the	
containers	either	as	a	horizontal	
stack	or	ver\cal	stack	

0 K0

K	

Previous approaches: container-based packing.

Previous approaches: container-based packing.

• Container	is	an	axis-aligned	
rectangular	region	such	that		
• either	it	contains	one	large	item.		
• or	items	are	packed	inside	the	
containers	either	as	a	horizontal	
stack	or	ver\cal	stack	
• or	all	items	inside	it	are	very	small	
in	both	dimensions.		 0 K0

K	

Previous approaches:
α-approxima)on using container-based packing.

0 K

K	

Previous approaches:
α-approxima)on using container-based packing.

• For	any	feasible	packing,	at	least	α	
frac\on	of	the	profit	can	be	packed	
into	O(1)	number	of	containers.	
• The	sizes	(and	thus	posi\ons)	of	C	
containers	can	be	found	in	nO(C)	\me.	
• Containers	can	be	packed	using	a	
Dynamic	Program	based	PTAS	for	
mul\ple-knapsack	problem.	

0 K

K	

BoIleneck of 2-approxima)on:

• Consider	the	case	when	all	items	are	long:		
have	either	width	>	K/2	or	height	>	K/2.		
•  Trivial	(2+ε)-approx.	by	taking	either	ver\cal	or	
horizontal	items	and	use	1-D	knapsack	PTAS.	
• Ver\cal	and	horizontal	items	can	interact	in	a	
very	complicated	way.	
• Not	clear	how	to	beat	2-approxima\on,	even	in	
cardinality	case,	using	container-based	packing.	

BoIleneck of 2-approxima)on:

• Consider	the	case	when	all	items	have	either	
width	>	K/2	or	height	>	K/2.		
•  Trivial	(2+ε)-approx.	by	taking	either	ver\cal	or	
horizontal	items	and	use	1-D	knapsack	PTAS.	
• Ver\cal	and	horizontal	items	can	interact	in	a	
very	complicated	way.	
• Not	clear	how	to	beat	2-approxima\on,	even	in	
cardinality	case,	using	container-based	packing.	

BoIleneck of 2-approxima)on:
• To	handle	this	complex	interac\on,		we	go	beyond	containers!		
• L-packing	problem:		
-	Given	long	items	(height	or	width	>	K/2)	and	an	L-shaped	region.	
-	Pack	maximum	profit	subset	of	items	inside	the	L-region.	
• Previous	best:	(2+ε)-approx.	
	

K	

Hh	

a(1)	a(s)	

b(t)	

K	 b(1)	

Wv	

PTAS for L-packing

Pseudo-poly)me algorithm for L-packing.

Hv	

Wh	

Hh	

Wv	

Pseudo-poly)me algorithm for L-packing.

• All	horizontal	(resp.	ver\cal)	items	are	placed	in	the	L-region	
according	to	nonincreasing	width	(resp.	height)	and	touching		
right	(resp.	top)	boundary.	

Pseudo-poly)me algorithm for L-packing.

• All	horizontal	(resp.	ver\cal)	items	are	placed	in	the	L-region	
according	to	nonincreasing	width	(resp.	height)	and	touching		
right	(resp.	top)	boundary.	

Pseudo-poly)me algorithm for L-packing.

• All	horizontal	(resp.	ver\cal)	items	are	placed	in	the	L-region	
according	to	nonincreasing	width	(resp.	height)	and	touching		
right	(resp.	top)	boundary.	
• Either	a	ver\cal	(or	hor.)	cut	exists	that	separates	the	tallest	(or	
widest)	item	from	a	smaller	L-region.	

Pseudo-poly)me algorithm for L-packing.

• All	horizontal	(resp.	ver\cal)	items	are	placed	in	the	L-region	
according	to	nonincreasing	width	(resp.	height)	and	touching		
right	(resp.	top)	boundary.	
• Either	a	ver\cal	(or	hor.)	cut	exists	that	separates	the	tallest	(or	
widest)	item	from	a	smaller	L-region.	

• Dynamic	Program		
gives	op\mal	solu\on	
in	(Kn)O(1)	\me.	

PTAS for L-packing.
• Structural	lemma:	
Modify	packing	of	horizontal	(resp.	ver\cal)	items	in	L-packing	s.t.		
-	items	of	profit	≤εp(OPT)	is	removed,		
-	remaining	items	are	shived	down	(resp.	lev)	or	stays	same,		
-	the	top	(resp.	right)	coordinates	of	items	takes	only	nO(1)	values.	

PTAS for L-packing.
• Structural	lemma:	
Modify	packing	of	horizontal	(resp.	ver\cal)	items	in	L-packing	s.t.		
-	items	of	profit	≤εp(OPT)	is	removed,		
-	remaining	items	are	shived	down	(resp.	lev)	or	stays	same,		
-	the	top	(resp.	right)	coordinates	of	items	takes	only	nO(1)	values.	

PTAS for L-packing.
• Structural	lemma:	
Modify	packing	of	horizontal	(resp.	ver\cal)	items	in	L-packing	s.t.		
-	items	of	profit	≤εp(OPT)	is	removed,		
-	remaining	items	are	shived	down	(resp.	lev)	or	stays	same,		
-	the	top	(resp.	right)	coordinates	of	items	takes	only	nO(1)	values.	

Cardinality case without rota)ons:
 ≈16/9-approxima)on

•  Long	items:	longer	side	>	K/2.	
•  Short	items:	both	sides	≤	K/2.	
• Packing	1	:	Packing	of	L-region	
	≈	(¾	OPTlong)	
• Packing	2	:	Packing	of	O(1)	containers	
≈	(½	OPTlong+¾	OPTshort)	
• Best	packing:		
		(¾OPTlong)¼	+	(½OPTlong+¾OPTshort)¾			
			≥		(OPTlong+OPTshort)9/16	≥								OPT.		

wL	

K	

		hL	

9
16

L of the ring ���

Packing 1: ≈ (¾ OPTlong), “L” of the ring!

• Create	stacks	from	rectangles	from	OPTlong		to	form	a	ring.	
• Remove	least	profitable	stack	in	the	ring.	
• Rearrange	remaining	long	items	into	an	L-packing.	
• Use	PTAS	for	L-packing	to	get	profit	at	least	≈	¾	OPTlong	.	

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• If	OPT	<	1/ε3,	solve	op\mally	by	brute-force.	
• So,	consider	OPT	≥1/ε3.	
• Define	Large	items	have	both	sides	≥	εK.	
• There	are	≤	1/ε2	≤	ε	OPT	large	items.	
• We	loose	small	profit	by	discarding	large	items.	
	

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• If	OPT	<	1/ε3,	solve	op\mally	by	brute-force.	
• So,	consider	OPT	≥1/ε3.	
• Define	Large	items	have	both	sides	≥	εK.	
• There	are	≤	1/ε2	≤	ε	OPT	large	items.	
• We	loose	small	profit	by	discarding	large	items.	

		

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• If	OPT	<	1/ε3,	solve	op\mally	by	brute-force.	
• So,	consider	OPT	≥1/ε3.	
• Define	Large	items	have	both	sides	≥	εK.	
• There	are	≤	1/ε2	≤	ε	OPT	large	items.	
• We	loose	small	profit	by	discarding	large	items.	
• So	all	remaining	items	have	either	height	or	
width	<	εK.	

		

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• Remove	all	items	intersec\ng	a	random	ver\cal	
(or	horizontal)	strip	of	width	(or	height)	εK.		
• Prob.	a	horizontal	(ver\cal)	long	item	is	
removed	≤		½	.	1	+	½	.	O(ε).	
• Prob.	a	horizontal	(ver\cal)	short	item	is	
removed	≤		½	.	½	+	½	.	O(ε).	
• Remaining	items	≈	(½	OPTlong+¾	OPTshort).	

εK	

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• Remove	all	items	intersec\ng	a	random	ver\cal	
(or	horizontal)	strip	of	width	(or	height)	εK.		
• Prob.	a	horizontal	(ver\cal)	long	item	is	
removed	≤		½	.	1	+	½	.	O(ε).	
• Prob.	a	horizontal	(ver\cal)	short	item	is	
removed	≤		½	.	½	+	½	.	O(ε).	
• Remaining	items	≈	(½	OPTlong+¾	OPTshort).	
• We	can	pack	remaining	items	into	O(1)	
containers	using	resource-augmenta\on.	

		

εK	

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• Remove	all	items	intersec\ng	a	random	ver\cal	
(or	horizontal)	strip	of	width	(or	height)	εK.		
• Prob.	a	horizontal	(ver\cal)	long	item	is	
removed	≤		½	.	1	+	½	.	O(ε).	
• Prob.	a	horizontal	(ver\cal)	short	item	is	
removed	≤		½	.	½	+	½	.	O(ε).	
• Remaining	items	≈	(½	OPTlong+¾	OPTshort).	
• We	can	pack	remaining	items	into	O(1)	
containers	using	resource-augmenta\on.	

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• Remove	all	items	intersec\ng	a	random	ver\cal	
(or	horizontal)	strip	of	width	(or	height)	εK.		
• Prob.	a	horizontal	(ver\cal)	long	item	is	
removed	≤		½	.	1	+	½	.	O(ε).	
• Prob.	a	horizontal	(ver\cal)	short	item	is	
removed	≤		½	.	½	+	½	.	O(ε).	
• Remaining	items	≈	(½	OPTlong+¾	OPTshort).	
• We	can	pack	remaining	items	into	O(1)	
containers	using	resource-augmenta\on.	

Packing 2 ≈ (½ OPTlong+¾ OPTshort)

• Remove	all	items	intersec\ng	a	random	ver\cal	
(or	horizontal)	strip	of	width	(or	height)	εK.		
• Prob.	a	horizontal	(ver\cal)	long	item	is	
removed	≤		½	.	1	+	½	.	O(ε).	
• Prob.	a	horizontal	(ver\cal)	short	item	is	
removed	≤		½	.	½	+	½	.	O(ε).	
• Remaining	items	≈	(½	OPTlong+¾	OPTshort).	
• We	can	pack	remaining	items	into	O(1)	
containers	using	resource-augmenta\on.	

Cardinality case with Rota)ons

With rota)ons: a simple 3/2-approxima)on.

• Resource	Contrac\on	Lemma:		
If	rectangles	M	can	be	packed	in	
KxK	bin	and	|M|≥1/ε3,	then	at	
least	2|M|/3	rectangles	can	be	
packed	into	Kx(1-O(ε))K	bin.	

	

With rota)ons: a simple 3/2-approxima)on.

• Resource	Contrac\on	Lemma:		
If	rectangles	M	can	be	packed	in	
KxK	bin	and	|M|≥1/ε3,	then	at	
least	2|M|/3	rectangles	can	be	
packed	into	Kx(1-O(ε))K	bin.	

	

With rota)ons: a simple 3/2-approxima)on.

• Resource	Contrac\on	Lemma:		
If	rectangles	M	can	be	packed	in	
KxK	bin	and	|M|≥1/ε3,	then	at	
least	2|M|/3	rectangles	can	be	
packed	into	Kx(1-O(ε))K	bin.	
• Using	resource	augmenta\on,	
this	shows	existence	of	a	
container	packing	that	gives	
3/2-approxima\on.	

	

Open Problems.

•  Find	a	PTAS!	Even	in	the	cardinality	case.	
• Understand	natural	generaliza\ons	of	L-packing.	

o Is	there	PTAS	for	ring	instance?	
o Is	there	PTAS	for	L-packing	with	rota\ons?	
o Is	there	PTAS	for	O(1)	instances	of	L-packing?	
	

• More	related	literature	and	open	problems:	
Approxima5on	and	Online	Algorithms	for	Mul5dimensional	Bin	Packing:	A	
Survey,	Christensen-Khan-Pokuca-Tetali,		Computer	Science	Review’17.	

	

Addi)onal Slides

Extension to the weighted case.

•  Few	items	can	contribute	to	the	majority	of	the	
profit.	
• We	can	no	more	discard	large	items.	
•  Involved	use	of	corridor-par\\oning.
[Adamaszek,Wiese;	SODA’15,	FOCS’13]	

			-		Any	feasible	packing	can	be	par\\oned		
						into	O(1)	corridors	(rec\linear	polygons)	
						defined		by	O(1)	number	of	line	segments	
						and	intersec\ng	only	rectangles	of		
						profit	≤εp(OPT).		
			-		A	large	frac\on	of	the	profit	can	be	
						retained	by	containers	constructed	
						from	corridors.	
	

PTAS for L-packing.

• Consider	horizontal	items	H.	

PTAS for L-packing.

• Consider	horizontal	items	H.	
• Create	G,	a	growing	subsequence	
of	items	where	heights	increase.	

PTAS for L-packing.

• Consider	horizontal	items	H.	
• Create	G,	a	growing	subsequence	
of	items	where	heights	increase.	
•  If	p(G)≤εp(OPT),		
-	remove	G.		
-	This	creates	several	groups.	
-	shiv	items	within	each	group.	

b(j)	

Group	2	

Group	1	

PTAS for L-packing.

• Consider	horizontal	items	H.	
• Create	G,	a	growing	subsequence	
of	items	where	heights	increase.	
•  If	p(G)≤εp(OPT),		
-	remove	G.		
-	This	creates	several	groups.	
-	shiv	items	within	each	group.	

Group	2	

Group	1	

b(j)	

PTAS for L-packing.

• Consider	horizontal	items	H.	
• Create	G,	a	growing	subsequence	
of	items	where	heights	increase.	
•  If	p(G)≤εp(OPT),		
-	remove	G.		
-	This	creates	several	groups.	
-	shiv	items	within	each	group.	

	

Group	2	

Group	1	

b(j)	

PTAS for L-packing.

• Consider	horizontal	items	H.	
• Create	G,	a	growing	subsequence	
of	items	where	heights	increase.	
•  If	p(G)≤εp(OPT),		
-	remove	G.		
-	This	creates	several	groups.	
-	shiv	items	within	each	group.	

	

Group	2	

Group	1	

b(j)	 Mul\ple	of	h(b(j))/2	

Mul\ple	of	h(b(j))/2n	

	Mul\ple	of	h(b(j))/2n	

PTAS for L-packing.

• Consider	horizontal	items	H.	
• Create	G,	a	growing	subsequence	
of	items	where	heights	increase.	
•  If	p(G)≤εp(OPT),		
-	remove	G.		
-	This	creates	several	groups.	
-	shiv	items	within	each	group.	
• Otherwise	if	p(G)>εp(OPT),		
use	recursion	within	the	groups.	
–	much	involved!	

Next Fit Decreasing Height(NFDH)
•  Considered	items	in	a	non-increasing	order	of	height	and	

greedily	packs	items	into	shelves.		
•  Shelf	is	a	row	of	items	having	their	bases	on	a	line		that	is	either	

the	base	of	the	bin	or	the	line	drawn	at	the	top	of	the	highest	
item	packed	in	the	shelf	below.		

•  items	are	packed	lev-jus\fied	star\ng	from	bocom-lev	corner	
of	the	bin,	un\l	the	next	item	does	not	fit.	Then	the	shelf	is	
closed	and	the	next	item	is	used	to	define	a	new	shelf	whose	
base	touches	the	tallest(lev	most)	item	of	the	previous	shelf.		

•  If	the	shelf	does	not	fit	into	the	bin,	the	bin	is	closed	and	a	new	
bin	is	opened.	The	procedure	con\nues	\ll	all	the	items	are	
packed.	

•  If	we	pack	small	rectangles	(𝑤,ℎ≤𝛿)	using	NFDH	into	B,	total	𝑤.ℎ −(𝑤+ℎ).𝛿 area	can	be	packed.	

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s			
	

a

b

Shelf Packing
Given	a	rectangular	region	of	size		a	x	b	
Goal:	Pack	squares	of	length	≤	s			
Algorithm:		Decreasing	size	shelf	packing.	

1 3

a

b

2

Take squares in decreasing size

•  Place sequentially

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	≤	s			
Algorithm:		Decreasing	size	shelf	packing.	

1 3

a

b

2

Take squares in decreasing size

•  Place sequentially
•  If next does not fit,
 open a new shelf

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s			
Algorithm:		Decreasing	size	shelf	packing.	

1 3

4 8 a

b

Take squares in decreasing size

•  Place sequentially
•  If next does not fit,
 open a new shelf

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

1 3

4 8

9 16

a

b

Take squares in decreasing size

•  Place sequentially
•  If next does not fit,
 open a new shelf

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b)

1 3

4 8

9 16

a

b

Shelf Packing
Given	a	rectangular	region	of	size		a	x	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b)

Right side: At most s £ a

1 3

4 8

9 16

a

b

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b)

Right side: At most s £ a
Top · s16 b

1 3

4 8

9 16

a

b

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b)

Right side: At most s £ a
Top · s16 b

Shelf 1: (s1 –s3) b

1 3

4 8

9 16

a

b

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b)

Right side: At most s £ a
Top · s16 b

Shelf 1: (s1 –s3) b
Shelf 2: (s4 – s8) b
… 1 3

4 8

9 16

a

b

Shelf Packing
Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b)

Right side: At most s £ a
Top · s16 b

Shelf 1: (s1 –s3) b
Shelf 2: (s4 – s8) b
….
Adding all, at most (s1-s16) b

1 3

4 8

9 16

a

b

